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Abstract
In this note, we find all solutions of the equation

π

4
= a arctan(φκ)+

b arctan(φ`), in integers κ and ` and rational numbers a and b, where
φ is the golden section.
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Motivated by Machin’s formula (see [Borwein and Bailey 03, p. 105])
π

4
= 4 arctan(5−1)− arctan(239−1),

several researchers (see, for instance, [Séroul 00] and the references therein)
generalized it to identities of the form

kπ

4
= m arctan(u−1) + n arctan(v−1),
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where u, v, k are positive integers and m,n are nonnegative integers. Such
formulae are useful in the computation of π. It is completely natural to ask
whether such formulas will hold if u, v are replaced by numbers from a larger
class than reciprocals of integers (like rational, algebraic, etc.). Chan, and
Chan and Ebbing (see [Chan 07, Chan and Ebbing 06]) investigated ana-
logues of Machin’s formula with some rational coefficients when the rational
numbers 5−1 and 239−1 are replaced by small powers of negative exponent
of the golden section φ = (1 +

√
5)/2 and they found three such formulas,

where the pairs of exponents are (κ, `) = (3, 1), (5, 3), (6, 2). In this short
note, we show that up to some trivial transformations, there are no others
besides the previous ones.

Theorem 1. If κ, ` ∈ Z\{0} with |κ| ≥ |`|, κ+ ` 6= 0 and a, b ∈ Q such that
π

4
= a arctan(φκ) + b arctan(φ`), (1)

then

(a, b, κ, `) ∈


(

1
3
, 1

3
, 3, 1

)
, (1, 1,−3,−1), (−1, 1,−3, 1), (1,−1, 3,−1),(

1
5
, 2

5
, 6, 2

)
, (1, 2,−6,−2),

(
−1

3
, 2

3
,−6, 2

)
, (1,−2, 6,−2),(

1
7
, 3

7
, 5, 3

)
, (1, 3,−5,−3),

(
−1

5
, 3

5
,−5, 3

)
, (1,−3, 5,−3)

 .

Before proving the theorem, we start with a few comments about the
proof, which relies on an identity of [Borwein and Borwein 87] and known
facts on algebraic numbers (see [Washington 97]). When |κ| > |`|, we embed
identity (1) in the biquadratic class number 1 field K = Q[φ, i], and use some
known results on the prime factors of Fibonacci and Lucas sequences, to
show nonexistence of solutions of (1) besides the mentioned ones. If κ = `,
we show that the mentioned identity is equivalent to an equation in Q[ζ20],
which has no solutions. We exclude the cases κ+ ` = 0 since it is well-known
that if x is a positive real number, then

π

2
= arctanx+ arctan

(
1

x

)
. (2)

We also note that whenever (a, b, κ, `) is a solution of equation (1) with
a 6= 1/2, then using the fact that arctan(φ−κ) + arctan(φκ) = π/2, one gets
that (−a/(1− 2a), b/(1− 2a),−κ, `) is also a solution of equation (1).

We mention that Machin-like formulas with powers of other irrationals
exist in the literature, an example being

π

2
= 2 arctan

(
1√
2

)
+ arctan

(
1√
8

)
.
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Proof. Let a = u/w, b = v/w, where u, v, w > 0 are integers with w and
gcd(u, v) coprime. Then the given relation becomes

wπ

4
= u arctan(φκ) + v arctan(φ`). (3)

By the result on page 345 in [Borwein and Borwein 87], the above relation
holds if and only if

(1− i)w(φ−κ + i)u(φ−` + i)v

is real, which is equivalent to the fact that

(1− i)w(1 + iφκ)u(1 + iφ`)v = (1 + i)w(1− iφκ)u(1− iφ`)v.

Raising the above equation to the fourth power and using the fact that
(1 + i)4 = (1− i)4 = −4, we get that

(1 + iφκ)4u(1 + iφ`)4v = (1− iφκ)4u(1− iφ`)4v. (4)

If κ = `, we then get that (
1 + iφκ

1− iφκ

)4(u+v)

= 1,

which implies either that u+ v = 0 or that ζ = (1 + iφκ)/(1− iφκ) is a root
of 1. If u + v = 0, then relation (3) leads to wπ/4 = 0, which is impossible.
Thus, ζ is a root of unity. For a positive integer m we write ζm = exp(2πi/m).
Since φ ∈ Q[ζ5] and i ∈ Q[ζ4], we get that ζ ∈ Q[φ, i] ⊆ Q[ζ5, ζ4] = Q[ζ20].
Hence, ζ = ζn20 for some n ∈ {0, . . . , 19}. This implies that

φκ = −i
(
ζn20 − 1

ζn20 + 1

)
= − tan

(nπ
20

)
.

One can now check that the above equation has no solution with n ∈
{0, . . . , 19} and κ ∈ Z\{0}.

Assume now that |κ| > |`|. Let K = Q[φ, i]. It is known that K is
biquadratic and has class number 1 (see [Hideo 86]). We shall show that
|κ| ≤ 12. Let π be any prime ideal dividing 1 + iφκ. From relation (4), we
get that π either divides 1− iφκ, or it divides 1− iφ`. If π divides 1− iφκ, it
follows that π divides 2. Hence, if π does not divide 2, then π divides both
1 + iφκ and 1− iφ`. Note that

NK(1 + iφκ) = (1 + φ2κ)(1 + (−φ)−2κ) = (φκ + φ−κ)2.
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Hence, NK(1 + iφκ) is either 5F 2
κ or L2

κ according to whether κ is odd or
even. Here, Fm and Lm are the regular Fibonacci and Lucas numbers given by
F0 = 0, F1 = 1, L0 = 2, L1 = 1 and Fm+2 = Fm+1 +Fm, Lm+2 = Lm+1 +Lm
for all m ≥ 0. Similarly, NK(1+ iφ`) is either 5F 2

` or L2
` according to whether

` is odd or even.

Assume now that |κ| ≥ 13. First, assume that κ is odd. Then there
exists a prime number p dividing Fκ which is primitive; i.e., such that p does
not divide Fµ for any positive integer µ < κ (see [Bilu et al. 01] for more on
primitive divisors). Let π be any prime ideal in K dividing p. If π divides
1 + iφκ, then π divides either 2 (which is impossible because p > 2), or π
divides 1− iφ`, which divides either 5F` or L` according to whether ` is odd
or even. Hence, p divides either 5F` or L`. Since p is primitive for Fκ, p
cannot divide 5F`. If p | L`, then since L` | F2`, we then get that κ | 2`, and
since κ is odd we get that κ | `, which is impossible. It remains to show that
we can always assume that p is divisible by some prime in K dividing 1+ iφκ.
Indeed, let π be some prime divisor of p. If π | 1 + iφκ, then we are done.
If π | 1 − iφκ, then the complex conjugate of π (which also divides p) must
divide 1 + iφκ. Finally, if π divides 1± i(−φ)−κ, then the image of π via the
Galois automorphism of K which sends −φ−1 to φ and fixes i will send π into
a prime ideal (still dividing p) divisor of 1± iφκ, which is a situation already
treated. This takes care of the proof of the fact that |κ| ≤ 12 if κ is odd. If
κ is even, then the same argument using the existence of primitive divisors
for the Lucas sequence shows that |κ| ≤ 12 also. It remains to compute the
examples. Since the remaining of our analysis is based on the arithmetic
structure of Fm and Lm for m = κ, ` and since F−m = ±Fm and L−m = Lm,
we assume that 0 < ` < κ (or, we replace κ and ` by their absolute values).

Let π - 2 be a prime ideal in K such that

π | 1 + iφκ and π | 1− iφ`. (5)

Clearly, π cannot divide any power of φ because φ is a unit. Further, π |
(1 + iφκ)− (1 + iφ`) = iφ`(1 + φκ−`), and since π - iφ`, we get that

π | 1 + φκ−` and π | 1− iφ`. (6)

Furthermore, π | φκ−` + iφ` = iφ`(1− iφκ−2`), which implies that

π | 1− iφκ−2` and π | 1− iφ`. (7)
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Continuing in this manner, we obtain that π | −iφκ−2`+ iφ` = iφ`(1−φκ−3`),
which implies that

π | 1− φκ−3` and π | 1− iφ`. (8)

Now let κ = r` + t, where 0 ≤ t < `. Fix κ ≤ 12, and let ` 6= 0 to
be the least positive integer satisfying (5). The previous analysis suggests
considering the following cases.

Case 1. r ≡ 0 (mod 4).

From (5) and the previous analysis, we get that

π | 1 + iφt and π | 1− iφ`,

where t < `, which implies that π | iφt(1 + φ`−t). Thus, π | 1 + φ`−t and
π | 1 + iφt, which in turn leads to

π | φ`−t − iφt.

If on the one hand t < ` ≤ 2t < 2`, then π | φ`−t(1 − iφ2t−`); that is,
π | 1 − iφ2t−` with 2t − ` < `, which is in contradiction with the assumed
minimality of `. If on the other hand 2t ≤ `, we then get π | −iφt(1− iφ`−2t).
Thus, π | 1 − iφ`−2t, which again either contradicts the minimality of ` (if
2t < `), or the fact that π - 2 (if 2t = `).

Case 2. r ≡ 1 (mod 4).

From (6), we get that

π | 1 + φt and π | 1− iφ`,

which implies π | φt(1 + iφ`−t). So,

π | 1 + iφ`−t and π | 1 + φt.

If ` ≥ 2t, then from the previous relations we get that π | 1 − iφ`−2t, which
is a contradiction. If ` < 2t, then π | iφ`−t − φt = iφ`−t(1 + iφ2t−`), and so,
π | 1 + iφ2t−`. Then, since 1 ≤ ` < κ ≤ 12, we have r ∈ {1, 5, 9} and a simple
computation reveals the possibilities

(κ, `) ∈ {(5, 3), (7, 4), (8, 5), (9, 5), (10, 6), (11, 6), (11, 7), (12, 7)}. (9)

5



Case 3. r ≡ 2 (mod 4).

From (7), we get that

π | 1− iφt and π | 1− iφ`

with t < `, which contradicts again the minimality of `.

Case 4. r ≡ 3 (mod 4).

From (8), we get

π | 1− φt and π | 1− iφ`.

If on the one hand t 6= 0, then π | −φt + iφ` = −φt(1− iφ`−t), which implies
π | 1− iφ`−t, in contradiction with the minimality of `. If on the other hand
t = 0, then κ = r`, with r ∈ {3, 7}, and we obtain the possibilities

(κ, `) ∈ {(3, 1), (6, 2), (7, 1), (9, 3), (12, 4)}. (10)

The authors of [Chan and Ebbing 06] found the Machin-like formulas
with powers (κ, `) of the golden section, where (κ, `) = (3, 1), (5, 3), (6, 2);
that is,

3π

4
= arctan(φ) + arctan(φ3),

5π

4
= 2 arctan(φ2) + arctan(φ6),

7π

4
= 3 arctan(φ3) + arctan(φ5).

To get the remaining examples listed in the statement of Theorem 1,
we note that whenever (a, b, κ, `) is a solution of equation (1) with a 6=
1/2, then using the fact that arctan(φ−κ) + arctan(φκ) = π/2, one gets
that (−a/(1 − 2a), b/(1 − 2a),−κ, `) is also a solution of equation (1). The
remaining nine solutions of equation (1) are all obtained in the above fashion
from the above three solutions with (κ, `) = (3, 1), (5, 3), (6, 2).

We now need to deal with the other pairs in (9) and (10), namely

(κ, `) ∈ {(7, 1), (7, 4), (8, 5), (9, 3), (9, 5),

(10, 6), (11, 6), (11, 7), (12, 4), (12, 7)}.
(11)
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Assume, say that (κ, `) = (7, 1). Take a prime ideal π in K such that π
divides both 1 + iφ7 and 13 (note that F7 = 13). Such a prime ideal divides
neither 2, nor 1 − iφ, since otherwise the rational prime 13 would divide
NK(1 − iφ) = (φ + φ−1)2 = 5, and so we get a contradiction. Similarly, we
can remove all the remaining possibilities from (11) since in each instance
there is a rational prime divisor of 5F 2

κ (with κ odd), or L2
κ (for κ even) which

is not a rational prime divisor of the corresponding norm of 1− iφ`.
We are not yet done, since so far we have merely shown that if (a, b, κ, `)

with |κ| ≥ |`| and κ+` 6= 0 satisfies equation (1), then (|κ|, |`|) = (3, 1), (5, 3),
(6, 2). In order to finish, we need to show that each such solution (a, b, κ, `) is
uniquely determined by its last two components. Assume that this is not so.
Then there exists a pair (κ, `) such that (a, b, κ, `) and (a′, b′, κ, `) are both
solutions of equation (1) for two distinct pairs (a, b) and (a′, b′) of rational
numbers. It then follows that arctan(φ`) and π are linearly dependent over
the rationals. Thus, there exists a rational number r such that φ` = tan(rπ).
By replacing r with 1/2− r, we may assume that ` > 0. Then (2 cos(rπ))2 =
4/(1 + φ2`). However, 2 cos(rπ) = eirπ + e−irπ is an algebraic integer. Thus,
4/(1 + φ2`) is an algebraic integer. When ` = 1 and 2 this last number takes
the values

2(
√

5− 1)√
5

and
2(3−

√
5)

3
,

and none of them is an algebraic integer. Since
4

1 + φ2
= (1−φ2+φ4)· 4

1 + φ6
,

we get that if the number 4/(1 + φ2`) is an algebraic integer when ` = 3,
then it is also for ` = 1, and we have just seen that this is impossible. This
indeed completes the proof of Theorem 1.
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